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Abstract

This paper treats the question of simultaneous robust attitude control and vibration suppression of orbiting spacecraft

with flexible appendages. The spacecraft consists of a rigid body and two flexible appendages and the finite dimensional

representation of the flexible spacecraft is assumed to be of arbitrary order. Robust nonlinear variable structure control

(VSC) strategy integrated with input shaping technique is concerned for the pitch angle control and elastic vibration

suppression under actuator saturation limit. More specially, the input shaper is implemented outside of the feedback loop,

which is designed for the reference model and achieves the exact elimination of residual vibration; while for the feedback

loop, the variable structure controller is designed to make the closed-loop system behave like the reference model with

the input shaper in the presence of parametric uncertainty, external disturbances and actuator saturation. To prevent the

presence of input saturation from destroying the system performance, a saturation compensator is designed as well for the

variable structure attitude control system. For the synthesis of the attitude controller, only the pitch angel and its

derivative are used. Simulation results are presented which show that in the closed loop, pitch angel control and elastic

mode stabilization are accomplished in spite of uncertainty and external disturbance.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most important problems in spacecraft design is that of attitude stabilization and control.
Although the missions of space vehicles and their attitude requirements vary greatly, high pointing accuracy is
an important part of the overall design problem for a spacecraft control system. Meeting the spacecraft
attitude control system design requirements in a realistic environment where the knowledge about the system
parameters may be incomplete, disturbances are present and orbital operations induces structural vibrations in
the flexible appendages is a challenging task for the designers.

Considerable research related to spacecraft attitude control system design has been done in the past several
decades [1–4]. Variable structure control (VSC) scheme has long been recognized as an effective means to
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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improve transient response and achieve robust performance and several representative works [5–8] on this
topic are available in the literatures. However, in most of these studies concerning VSC, it is assumed that the
spacecraft is rigid and no flexible mode actions are considered. For the flexible spacecraft model, finite
mathematical discretization was used to design sliding mode controllers and there have been significant
research efforts for the general feedback attitude control of flexible spacecraft [9–11]. In a practical situation,
the measurements o flexible modes are extremely difficult. Thus, there is a need to design a control system for
torque control, which does not require the measurement of all state variables. Base on output feedback control
concept, controllers for maneuvering the flexible spacecraft have been designed in Refs. [12–14]. However, in
this approach, the structure of the uncertainty, which is determined by the number of vibration modes
included in the model, is to be known in the controller design. Moreover, in their effort, this disturbance
vector has a special structure that may limit its applicability to many systems, and no parametric uncertainty is
considered. Recently, for the uncertain nonlinear system, Lewis [15] presents a general sliding mode output
feedback control methodology, which addressed uncertainty in the plant, control, and disturbance matrices,
provided certain bounds are known.

A typical feature in all of the mentioned attitude control schemes is that the control device is also assumed
to be able to produce big enough control torque to reject the external disturbances and no actuator saturation
limits is considered in the controller design. Unfortunately, this requirement is not always satisfied in reality
due to the physical structure and energy consumption, and thus there does exist a control saturation limit,
which can lead to serious discrepancies between commanded input signals and actual control effort, and is also
a source of degradation or, even worse, instability in the performance of the system. Extensive results
pertaining to spacecraft attitude control systems containing actuator saturation nonlinearities have been
presented by Bošković et al. [16], Tsiotras and Luo [17], Robinett et al. [18], Wallsgrove and Akella [19], Bang
et al. [20] and references therein.

To reduce vibrations the use of active vibration control technique are investigated as a potential solution to
efficiently maneuver lightweight flexible spacecraft and minimize the excitation of structural resonances during
operations. One simple and special feed-forward control strategy, known as input shaping, has been studied
widely since its first appearance [21] for possessing the advantages of simplicity and effectiveness, and because
no additional sensor and actuator are required. With this method, an input command is convolved with a
sequence of impulses, called an input shaper, to produce a shaped command that causes less vibration than the
original unshaped command. Singhose et al. [22] studied an input shaping controller for slewing a flexible
spacecraft. Banerjee and Padereiro [23] proposed the application of input shaping for vibration reduction of
flexible spacecraft following momentum damping with/without slewing. Hillsley and Yurkovich [24,25] apply
input shaping to large angle movements of a two-link robot, switched to feedback control when approaching
the desired position. Chang and Park [26] treated the application of time-varying input shaping for vibration
reduction of an industrial robot. Modified input shaping was presented in Ref. [27] for multimode vibration
suppression of a rotating single-link flexible manipulator. In Ref. [28], a new approach integrating component
synthesis vibration suppression based command shaping technique and positive position feedback control is
proposed for flexible spacecraft attitude maneuver. Nonlinear input shaping technique was considered by
Gorinevsky and Vukovich [29] for the flexible spacecraft reorientation maneuver as well. An adaptive input
shaper providing robustness to parameter uncertainties by tuning the shaper to the flexible mode frequencies is
explored in Ref. [30].

The contribution of this work lies in the derivation of a nonlinear control law for the attitude maneuver
control and input shaping for vibration reduction of an orbiting flexible spacecraft in the presence of external
disturbances, parameter uncertainties and control input saturation. Although the design method is applicable
to spacecraft of other configurations, here an orbiting spacecraft consisting of a rigid hub with two flexible
appendages is considered for system design. Based on input shaping technique, the input shaper is designed
outside of the feedback loop such that the exact elimination of residual vibration can be achieved. The
amplitudes and instances of the impulses application can be obtained for the natural frequency and damping
ratio of the reference model, respectively. In the feedback loop, the VSC strategy using only output
information is employed to make the closed-loop system behave like the reference system with input shaper
and suppress the vibration of the flexible structures in the presence of parametric uncertainty and external
disturbances. Moreover, a compensator design is also presented for preventing the presence of input
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saturation from deteriorating the system performance. Lyapunov stability analysis shows that the proposed
control guarantees asymptotical convergence of attitude angle and angular velocity in the presence of bounded
parameter variation/disturbances and even actuator saturation limits. Simulation results are also provided to
compare the proposed controller with a conventional proportional-integral-derivative (PID) with anti-windup
controller. The paper is organized as follows. The next section states flexible spacecraft modeling. The
principle of input shaping and the attitude control system design is described in Section 3. Section 4 presents
and analyzes the simulation results. Section 5 concludes the paper.

2. Mathematical model of a flexible spacecraft

The flexible spacecraft model under consideration is shown in Fig. 1. The model consists of a rigid central
hub, which represents the spacecraft body, and two flexible appendages, which represent antennas, solar
arrays, or any other flexible structures. This model is representative of a relatively large class of spacecraft
employed for communication, remote sensing or numerous other applications [3,13,14]. Define the OXYZ and
oxyz as the inertial frame and the frame fixed on the hub, respectively. Denote w(x, t) as the flexible
deformation at point x with respect to the oxy frame, and l is the distance of a point chosen on the appendage
from the center of the hub.

The equations of motion are derived using the Lagrangian approach. Although the vibration of the
appendages is described by partial differential equations, spatial discretization method is used to obtain a set
of ordinary differential equations to describe the motion of the spacecraft. For spatial discretization using
assumed modes method, the transverse elastic deflection of the appendage along y in the oxyz plane is
expressed as

wðx; tÞ ¼
XN

i¼1

fiðxÞqiðtÞ (1)

where fiðxÞ ði ¼ 1; 2; . . . ;NÞ are the chosen admissible functions which satisfy the geometric and physical
boundary conditions, and qi(t) are the generalized coordinates for the flexible deflection. It is assumed here
that N modes are sufficient for the computation of elastic deformation.

These nonlinear differential equations describing the rotational and elastic dynamics are given by [3]

J €yþMyq €q ¼ Th þ d (2a)

MT
yq
€yþMqq €qþ Cqq _qþ Kqqq ¼ 0 (2b)

where q ¼ ½q1; q2; . . . ; qN �
T, the element mass, stiffness matrices and the nonlinear terms are governed

by J ¼ Jh þ 2
R l

b
rx2 dxþ 2mtl

2; ½Kqq�ij ¼ 2
R l

b
E I f00i ðxÞf

00
j ðxÞdx, ½Mqq�ij ¼ 2

R l

b
rfiðxÞfjðxÞdxþ 2mtfiðlÞfjðlÞ;

and ½Cqq�ij ¼ 2
R l

b
C I f00i ðxÞf

00
j ðxÞdx. Here, C and E are the damping coefficient and modulus of elasticity,

respectively, for the appendages and I is the sectional area moment of inertia with respect to the appendage
Fig. 1. Spacecraft model with single-axis rotation.
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bending axis, and d(t)AR is the external disturbances which belong to L2[0, N) and jjdðtÞjjpdd where dd is a
known positive constant.

Eq. (2) can be written in a compact form as

M Z
��

þC Z
�

þK Z ¼ BðTh þ dðtÞÞ (3)

where

Z ¼ ½y; qT�T 2 RNþ1; M ¼
J Myq

MT
yq Mqq

" #
; C ¼ diagf0;Cqqg; K ¼ diagf0;Kqqg; B ¼

1

0

� �

and 0 denotes a null vector of appropriate dimension.
The system of Z second-order differential equations, Eq. (3) can be transformed into the state-space form

_x ¼ Axþ BuðtÞ þ BdðtÞ (4)

where

x ¼
Z

Z
�

" #
; A ¼

0 I

�M
�1

K �M
�1

C

� �
; B ¼

0

M
�1

B

� �
; uðtÞ ¼ Th.

In this work, we are interested in deriving a control system such that in the closed-loop system, the pitch
angle y(t) is rotated from initial state to yd 2 ½0; 2p�, for example, setting to 601, in the presence of external
disturbance and parametric uncertainty, and at the same time, the induced elastic oscillations are actively
damped out. For the design of the controller, it is assumed that the synthesis of the controller must also be
done using only the measured signals y and _y, since the elastic modes q and _q are not available. In addition, it
is desired that the structure of the attitude control law must be independent of the dimension of the spacecraft
model. This is important since the flexible structures have infinite dimension, but of then finite dimensional
truncated models are considered for analysis and design.

3. Control system design

This paper focuses on simultaneous precision positioning and vibration suppression of flexible spacecraft
during attitude maneuvering. The introduced control strategy consists of input shaping unit and robust VSC
unit with saturation compensator, and both units are designed separately, as shown in Fig. 2. The input
shaping unit is implemented outside of the feedback loop and used to suppress induced vibration of the
reference model due to orbital operations. The attitude control unit based on variable structure output
Fig. 2. A block-diagram of variable structure/input shaping algorithm for flexible spacecraft vibration reduction.
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feedback control (VSOFC) theory then provides precision positioning control and robust to external
disturbances and uncertain. This is an effective method of implementing input shaping for satisfactory
performance and robustness even when parameter variations and external disturbance occur simulta-
neously in the process. In addition, an internal saturation compensator is employed to compensate the
actuator saturation, which imposes limitations on the magnitude of the control input, such that the system
performance can be guaranteed. The following systematic design procedure will be provided for designing
the system.

3.1. Input shaping technique

In the method of input shaping [21], an input command is convolved with a sequence of impulses, an input
shaper, designed to produce a resulting input command that causes less residual vibration than the original
unshaped command. This is, any vibration induced by the first part of the command is canceled by vibration
induced by a later portion of the command, and the result of the convolution is then used to derive the system.
The convolution can be pre-computed if the entire unshaped input is known, or more likely, it can be
computed in real time from the input command generator. The impulses that constitute the shaper must have
appropriate amplitudes and time locations, which are determined by solving a set of constraint equations,
which can generally be categorized as residual vibrations constraints, robustness constraints, constraints on
the impulse amplitudes, or time optimality requirements. This method is briefly described in this section, see
e.g., Refs. [21–30] for details.

For a linear second-order system

GðsÞ ¼
o2

s2 þ 2xoþ o2
(5)

with natural frequency o and damping ratio x. Then, for system (5), the response to a sequence of N impulses
is described as

Y ðtÞ ¼
XN

i¼1

Aioffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p exoðt�tiÞ sin o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðt� tiÞ

� �" #
(6)

where Ai and ti are the amplitude and the application time of the ith impulses, respectively; these are
the parameters to be determined for the input shaping technique design by using the following constraints,
Eqs. (7a) and (7b), derived from Eq. (6)

XN

i¼1

Ait
p
i e
�xoðtN̄�tiÞ sin tio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �� �
¼ 0 (7a)

XN

i¼1

Ait
p
i e
�xoðtN̄�tiÞ cos tio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �� �
¼ 0 (7b)

where p ¼ 0; 1; . . . ; ~N � 2. The above two constraints were derived from the requirements that the amplitude
of Y(t) and its derivatives (with respect to o) be made zero for t4tN , which imply zero amplitude of vibration
after tN . From Ref. [21], Ai and ti can be concluded as follows:

Ai ¼

N � 1

i � 1

 !
Ki�1

PN̄�1
j¼0

N � 1

j

 !
Kj

; ti ¼ ði � 1Þ
p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; i ¼ 1; � � � ;N (8)

where K ¼ exp �ðpxÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ

h i
. Note that the input shaper impulse sequences can also be generalized to

consider more than one vibration mode, by convolving the impulse sequences for each individual mode with



ARTICLE IN PRESS
Q. Hu / Journal of Sound and Vibration 318 (2008) 18–35 23
one another. Let the input with Njðj ¼ 1; . . . ; nÞ (n41) impulses be used in the jth mode. After the necessary
convolutions, the input impulse sequences, Amult, can be expressed:

Amult ¼ A1s � A2s � � � � Ans (9)

where Ajs is the impulse sequences of the jth mode of the system with Nj impulses, and * is the convolution
operator.

Remark 1. In this manner, for a vibratory system, the described impulse sequence can be convolved to an
arbitrary input, to obtain the same vibration-reducing properties of the impulsive input case. In addition, the
same expressions that guarantee vibration-reducing properties of the constraints with respect to frequency also
guarantee vibration-reducing properties with respective to damping ratio. Moreover, the high variations in
damping ratio can be tolerated.

From above analysis, it is known that he input shaper is an open-loop controller, which has the limitation in
coping with parameter changes and disturbances to the system. Moreover, this technique requires relatively
precise knowledge of the dynamics of the system. Even if several design approaches have been propose to
improve the robustness of input shaping to the damping factors and natural frequencies of the flexible
structure [27–29]. It should also be noted that the plant being linear is essential for proving why the input
shaping technique works. In this work, the input shaping is applied in conjunction with the VSC for
maneuvers of flexible spacecraft. The preliminary results that indicate such control architecture, which
provides very good performance, will be shown in the next sub-section.
3.2. Variable structure attitude controller design

From Fig. 2, system (4) can be rewritten as

_x ¼ Axþ BuðtÞ þ Bur þ BdðtÞ (10)

where uðtÞ ¼ uðtÞ þ urðtÞ. Here, the reference model is selected as the nominal system. The combination of the
input shaper convolving with the reference model dynamics can be expressed as

_xm ¼ Amxm þ Bmur (11)

where Am and Bm are the known matrices of the nominal system. According to the principle of the input
shaping technique, the shaped input ur can be expressed as

ur ¼ rðtÞ � Amult (12)

where * is the convolution operator. Then applying convolution operator, one can rewrite Eq. (12) as

ur ¼
Yn

j¼1

Aj;1

 !
rðtÞ þ X 1;2

Yn

j¼2

Aj;1

 !
rðt� t1;2Þ þ � � � þ

Yn

j¼1

Aj;Nj

 !
r t�

Xn

j¼1

tj;Nj

 !
(13)

To simplify notation, Eq. (13) can be written as

ur ¼
X2n�1

k¼0

akrðt� tkÞ (14)

where

a0 ¼
Yn

j¼1

Aj;1; a1 ¼ A1;2

Yn

j¼2

Aj;1; . . . ; a2n�1 ¼
Yn

j¼1

Aj;Nj
; t0 ¼ 0; t1 ¼ t1;2; . . . ; t2n�1 ¼

Xn

j¼1

tj;Nj
.

Substituting Eq. (14) into Eqs. (11) and (12), the following equations can be obtained:

_x ¼ Axþ BuðtÞ þ B
X2n�1

k¼0

akrðt� tkÞ

" #
þ BdðtÞ (15)
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_xm ¼ Amxm þ Bm

X2n�1

k¼0

akrðt� tkÞ

" #
(16)

The parameter variations of the system considered here are defined as follows. The parameter uncertainties
of the system, DA, can be expressed as

DA ¼ A� Am (17)

It is noted that in this work the uncertainty matrix DA need not satisfy the so-called matching condition.
However, the uncertainty in the input is assumed to satisfy the matching condition and can be expressed as

DB ¼ B� Bm ¼ BmDB (18)

Introducing e(t) ¼ x(t)�xm(t) into Eqs. (15) and (16), the error dynamics are expressed in terms of the error
state vector e(t):

_e ¼ ðAm þ DAÞeþ BmðI þDBÞuþ DAxm þ BmDf (19)

where Df ¼ DB

P2n�1
k¼0 akrðt� tkÞ þ ðI þDBÞd.

It is assumed in this study that the attitude angle and angular velocity are measurable, and the elastic modes
are unavailable. The measurement available for the controller design can be expressed in the output form as

y ¼ Ce (20)

where y 2 Rp and C is an appropriately dimensioned matrix.
Throughout the remainder of this paper, the following assumptions are taken to be valid:

Assumption 1. The triplet (Am, Bm, C) is controllable and observable.

Assumption 2. There exist known constants dA and dB such that the uncertainties, DA and DB in Eqs. (17) and
(18), are known but bounded as jDAjjpdA and jjDBjjpdB.

Remark 2. If it is possible to design a control law that makes the error dynamics (19) have a stable zero
steady-state solution, i.e., e(t)-0-x(t)-xm(t), then the closed-loop system will exactly eliminated the
residual vibration like the reference model. Since sliding mode control provides good ability to reject
disturbances and remain robust to parameter perturbations while tracking a desired trajectory, it can be more
useful for this purpose than other strategies in the literature.

In order to simplify the development of the control design scheme, the following state transformation
is applied:

eðtÞ ¼ TeðtÞ (21)

with T �1 ¼ TT. The transformed equations with eT ¼ eT1 eT2

h iT
, e1 2 Rn�m and e2 2 Rm, are

e
�

1 ¼ ðA11 þ DA11Þe1 þ ðA12 þ DA12Þe2 þ DA11m DA12m

� �
xmðtÞ (22a)

e
�

2 ¼ ðA21 þ DA21Þe1 þ ðA22 þ DA22Þe2 þ DA21m DA22m

� �
xmðtÞ þ B2ðI þDBÞuþ B2Df (22b)

Y ¼ CTTe ¼ C1e1 þ C2q2 (22c)

where

A11 A12

A21 A22

" #
¼ TAmTT;

DA11 DA12

DA21 DA22

" #
¼ TDATT;

DA11m DA12m

DA21m DA22m

" #
¼ TDA and TBm ¼

0

B2

" #
.

3.2.1. Switching surface design

In the following, the design of a variable structure attitude control system is considered. Essential to the
design of a variable structure controller is the selection of switching surface; then the control law is designed
such that all the trajectories are attracted towards this surface and after reaching the surface they slide on it.
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The structure of the controller changes when the trajectory crosses the switching surface. For the purpose of
design, select a switching surface S(t) in the error state space [15,31,32]

S ¼ ðGC2Þ
�1Gy ¼ ðGC2Þ

�1GC1e1 þ e2 (23)

where the matrix G 2 Rm�p is selected by the designer, S 2 Rm and (GC2) is assumed to be invertible. Eq. (23)
can be rewritten to express e2 in terms of e1 and S as

e2 ¼ S � ðGC2Þ
�1GC1e1 (24)

Substituting Eqs. (24) into Eq. (22) gives

e
�

1 ¼ Are1 þ ðA12 þ DA12ÞS þ DA11m DA12m

� �
xmðtÞ (25a)

Ar ¼ A11 � A12ðGC2Þ
�1GC1 þ DA11 � DA12ðGC2Þ

�1GC1 (25b)

Note that G must be chosen to ensure that the eigenvalue of the reduced-order matrix Ar, i.e.,
f�l1;�l2; . . . ;�ln�mg (real part of li40) are stable. Even if Ar has uncertainties associated with it, they
are assumed to be bounded. Conditions were given in Refs. [15,31,32], in the absence of uncertainty for how to
choose G so that (n�m) prescribed non-zero and complex eigenvalues f�l1;�l2; . . . ;�ln�mg with
ReðliÞ40ði ¼ 1; 2; . . . ; n�mÞ can be assigned, namely, arbitrary pole placement is possible if

rank½C2ðGC2Þ
�1G � I �pp�m (26)

However, if this condition is not satisfied, it still may be possible to achieve stable poles even in the presence of
uncertainty, but they may not be arbitrary. With a stable Ar matrix having been determined, the eigenvalues of
Ar can be grouped as f�l1;�l2; . . . ;�ln�mg. The following lemma shows that

jj expðArtÞjjpg expð�lmintÞ (27)

where lmin40 is the minimum real part of the li and g40. Thus, the important issue with this design is being
able to determine lmin given a stable set of eigenvalues.

Lemma 1. Consider Eq. (25a). Let lmin40 be the minimum real part of f�l1; l2; . . . ; ln�mg. Then we have

the following.
(1)
 The jj expðArtÞjjpg expð�lmintÞ for some g40.

(2)
 Also, e1k k is bounded by w(t) after a finite period of time with w(t) the solution of

_wðtÞ ¼ �lmwðtÞ þ g ðA12 þ DA12Þ
		 		 Sk k þ d�
� �

(28)

where w(0)40, lwolmin and DA11m DA12m

� �
xmðtÞ

		 		od�.
Proof. The proof is straightforward and follows directly from the same arguments as in Refs. [31,32]. &

3.2.2. Variable structure output feedback controller design

By the use of Eq. (23), the time derivatives of S is given by

_S ¼ ðGC2Þ
�1G _y ¼ ðGC2Þ

�1GC1e1 þ e2½Pe1 þQS þ Rþ B2ðI þDBÞu� (29)

where the matrices Q, R and P are defined as, respectively, Q ¼ (GC2)
�1GC1(A12+DA12)+(A22+DA22) R ¼

ðGC2Þ
�1GC1 DA11m DA12m

� �
xmðtÞ þ DA21m DA22m

� �
xmðtÞ þ B2Df and P ¼ (GC2)

�1GC1[A11+DA11�

(A12+DA12)(GC2)
� 1GC1]+A21+DA21�(A22+DA22)(GC2)

� 1GC1.
In this work, the desired control law is chosen in the form

u ¼ B�12 ðI �DBÞ
�1
½�HwðtÞ �P Sk k � d� Z�sgnððSÞ (30)

where HX Pk k, PXjjQjj, diX supðRÞi, Zi40, i ¼ 1, 2, y, m, DB is defined as DB ¼ ðB2DBÞB
�1
2 and the term

‘‘sgn(�)‘‘ is the sign function. Then the stability analysis result is given in the following.
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Theorem 1. Consider the uncertain system (22) subjected to Assumption 1 and 2. If the input control u(t) in

Eq. (22) is given as that indicated by Eq. (30), then _Vp�
Pm

i¼1Zijsijo0 holds and the closed-loop satisfies S,
_S and e are bounded and e-0 as t-N.

Proof. Consider the Lyapunov function candidate:

V ¼ 1
2
STS (31)

Differentiating the Lyapunov function V gives

_V ¼ ST _S ¼ ST½Pe1 þQS þ Rþ B2ðI þDBÞu� & (32)

Using the swapping technique similar to that of Kan [32] by rearranging B2(I+DB) to the form of
ðI þDBÞB2, one can obtain the following:

_V ¼ ST _S ¼ ST½Pe1 þQS þ Rþ ðI þDBÞB2u� (33)

Defining vectors f9Pe1 þQS þ R and K̄9ðI�̄DBÞ
�1
½HwðtÞ þPjjSjj þ d�, then controller (30) simplifies to

u ¼ �B�12 KðtÞsgnðSÞ (34)

and substituting control u in Eq. (34) into Eq. (33) yields

_V ¼ ST f � ðI þDBÞKðtÞsgnðSÞ
� �

¼
Xm

i¼1

si f i �
X
jai

ðDBÞijKjðtÞsgnðsjÞ � ½1þ ðDBÞii�KiðtÞsgnðsiÞ

" #
(35)

It can be seen that sliding condition holds if

½1� ðDBÞii�KiðtÞXLi þ Zi þ
X
jai

ðDBÞijKjðtÞ; i ¼ 1; 2; . . . ;m (36)

with DB defined in Eq. (30) and jjf ijjpHwðtÞ þPjjSjj þ di9Li. Note that sliding condition also holds if vector
K̄ðtÞ is chosen such that

½1� ðDBÞii�KiðtÞ ¼ Li þ Zi þ
X
jai

ðDBÞijKjðtÞ; i ¼ 1; 2; . . . ;m (37)

Eq. (37) contains a set of m equalities with m switching gains Ki. Using matrix notation, Eq. (37) is
equivalent to

½I �DB�KðtÞ ¼ Lþ Z (38)

Using Frrobenius–Perron theorem [33], then a unique and positive solution for KðtÞ exists and is given by

KðtÞ ¼ ½I �DB�
�1ðLþ ZÞ (39)

Submitting Eq. (39) into Eq. (35) and noting wðtÞX e1ðtÞ
		 		 from Lemma 1, it can be verified that

_V ¼
Xm

i¼1

si f i �
X
jai

ðDBÞijKjðtÞsgnðsjÞ �
½1þ ðDBÞii�

½1� ðDBÞii�
Li þ Zi þ

X
jai

ðDBÞijKjðtÞ

" #
sgnðsiÞ

( )

¼
Xm

i¼1

si f i �
½1þ ðDBÞii�

½1� ðDBÞii�
Li þ Zi

� �
sgnðsiÞ�

( X
jai

ðDBÞijKjðtÞsgnðsjÞ

(

þ
½1þ ðDBÞii�

½1� ðDBÞii�
ðDBÞijKjðtÞsgnðsiÞ

))

p�
Xm

i¼1

Zijsij (40)
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Since V is positive definite and _V is negative semi-definite, therefore, S; e 2 L1 and S asymptotically converges
to zero. Also, the fact _S; €S 2 L1 due to the bounded perturbations and that S is convergent imply that _S
asymptotically converges to zero by Barbalat’s lemma. Thus, the closed-loop system approaches the union of
S(t) ¼ 0 and _SðtÞ ¼ 0 in an asymptotic fashion. In other words limt!1e ¼ 0.
3.3. Variable structure output feedback controller design with saturation compensator

From a practical perspective, one of the major issues in above attitude control system design is that the
signal uðtÞ generated by the control law might not be implemented because of physical constraints. A common
example of such a constraint is actuator saturation, which imposed limitations on the magnitude of the
achievable control input. When the actuator saturation is considered, the actual attitude control being
implemented is different from Eq. (30) with Eq. (28) as follows:

u ¼ satðu0; uL; uU Þ (41a)

u0 ¼ B�12 ðI �DBÞ
�1
½�HwðtÞ �PjjSjj � d� Z�sgnðS � wÞ � B�12 ðI þDBÞ

�1awþ ur (41b)

_w ¼ �awþ ðI þDBÞB2ðu� u0Þ (41c)

where w is an auxiliary variable, which is a filtered version of the effect of input saturation on the variable
being controller, a40 to be selected by the designer and the saturation function ‘‘sat’’ is linear with unity slope
between its lower and upper limits, i.e.,

satðu0; uL; uU Þ ¼

uU if u04uU

u0 if uLpu0puU

uL if u0ouL

8><
>: (42)

where uL and uU are the constant lower and upper limit bounds, respectively. Note that in the case of no input
saturation, then w remains zero and the control law becomes the same as the standard control law described in
Eq. (30). In the presence of input saturation, w is non-zero, thus giving rise to an error (S�w). The stability
analysis result is given in the following.

Theorem 2. Consider the system (22) with the Assumptions 1–3. If the control law is designed in Eqs. (41a) and

(41b), subject to saturation and the auxiliary control is selected as in Eq. (28), then the closed-loop system is

asymptotically stable and the attitude e-0, (S�w)-0 as t-N.

Proof. Consider the Lyapunov function V ¼ ðS � wÞTðS � wÞ. Then the time derivative of V is by using the
control law in Eqs. (41a) and (41b)

V
�

¼ ðS � wÞT½f þ ðI þDBÞB2ðu� urÞ � _w�

¼ ðS � wÞT½f þ ðI þDBÞB2ðu� urÞ þ aw� ðI þDBÞB2ðu� u0Þ�

¼ ðS � wÞT½f þ ðI þDBÞB2u0 � ðI þDBÞB2ur þ aw� (43)

Substituting Eq. (41b) into Eq. (43) and using the same manipulations as Eqs. (35)–(40) the time derivative
of V
�

becomes

V
�

¼
Xm

i¼1

ðsi � wiÞ f i �
X
jai

ðDBÞijKjðtÞsgnðsj � wiÞ � ½1þ ðDBÞii�KiðtÞsgnðsi � wiÞ

" #

¼
Xm

i¼1

si � wi


 �
f i �

X
jai

ðDBÞijKjðtÞsgnðsi � wiÞ �
½1þ ðDBÞii�

½1� ðDBÞii�

(

� Li þ Zi þ
X
jai

ðDBÞijKjðtÞ

" #
sgn si � wi


 �)
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¼
Xm

i¼1

si � wi


 �
f i �
½1þ ðDBÞii�

½1� ðDBÞii�
Li þ Zi

� �
sgn si � wi


 �
�

( X
jai

ðDBÞijKjðtÞsgnðsjÞ

(

þ
½1þ ðDBÞii�

½1� ðDBÞii�
ðDBÞijKjðtÞsgnðsi � wiÞ

��

p�
Xm

i¼1

Zijðsi � wiÞj (44)

Then, the result can be concluded by the same techniques as those used in the proofs of Theorems 1. This
completes the proof. &

In practice, the sgn function term ‘‘sgn(�)’’ in Eq. (30) or Eq. (41b) usually leads to an undesirable
chattering of when system across the switching surface S ¼ 0. The chatter is normally undesirable in practice,
since it may excite unmodeled high-frequency dynamics, which could result in unforeseen instabilities and may
cause damage to actuator mechanisms. This problem can be alleviated by introduction a smooth hyperbolic
tangent function, which is defined as

tanhðbsÞ ¼
ebs � e�bs

ebs þ e�bs
(45)

Using this approximation, the control law in Eq. (41b) can be modified as

u0 ¼ B�12 ðI �DBÞ
�1
½�HwðtÞ �PjSj � d� Z� tanh½bðS � wÞ� � B�12 ðI þDBÞ

�1awþ ur (46)

Note that the hyperbolic tangent function is continuously differentiable (with respect to S), and as b-N,
and tanhðdÞ ! sgnðdÞ, so (46a) tends to Eq. (30) or (Eqs. (46b)–(41b)) in the limit. It is being used here to
illustrate that a continuous approximation to the discontinuous sliding-mode control law can alleviate
undesirable chattering without incurring a significant loss of the performance achieved by the original
designed control law.
4. Simulation results

In order to demonstrate the effectiveness of the proposed control schemes, numerical simulations have been
performed and presented in this section. The key technical indexes of flexible spacecraft used in the simulation
are given in Ref. [28]. Here the first five elastic modes, 3.161, 16.954 s, 47.233, 94.557 rad/s, and 153.003 rad/s
with all damping ratios of 0.004, respectively, are considered in the simulation. The first two low-order modes
of five are mainly considered in the flexible system for vibration suppression and have been taken into account
in the controller design. The reference model used is the normal system with the first two low-order modes of
five, o1m ¼ 3.1613.161 rad/s and o1m ¼ 16.95416.954 rad/s, and the damping ratio z1m ¼ z2m ¼ 0.004,
respectively. In the simulation, it is desired to slew the spacecraft to a target angle 601 and the initial
conditions are assumed to be (0) ¼ 0, _yð0Þ ¼ 0, q(0) ¼ 0 and _qð0Þ ¼ 0. In addition, the flywheel, in practical
implementation, restricted by physical structure (saturation), is always behaving as bounded control, with the
saturation value 0.5Nm. Note that for the purpose of controller design, first two modes are considered.

The relations between the parametric uncertainty, the actual natural frequencies oI and the normal natural
frequencies oim, can be expressed as follows:

jo2
i � o2

imjdAo2
im ði ¼ 1; 2Þ (47)

Assume DB ¼ Bm � 0:5 sinð4tÞ, and the uncertainty input DB ¼ 0.1 is less than the upper bound of input
variation dB ¼ 1, and the external disturbance d(t) is a random disturbance torque, given by

dðtÞ ¼ dmaxNðdÞ (48)

whose maximum absolute dmax has been fixed to 0.1Nm; NðdÞ denotes the normal distribution with mean
zero and standard deviation one.
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4.1. PID with anti-wind control and its combination with IS

To demonstrate the performance of the vibration control schemes, a proportional plus integral plus
derivative (PID) feedback control of collocated sensor signals is first adopted for control of rigid-body motion
of the spacecraft. To overcome the saturation problem, anti-wind control (AWC) technique is considered [34].
A block diagram of the PID with AWC is shown in Fig. 3. The corresponding hub angle and velocity of the
spacecraft, modal vibrations and the required control torque of response using the PID with AWC are shown
in Fig. 4. It is noted that an acceptable hub angle response was achieved. The spacecraft reached the demanded
angle with a settling time about 30 s without overshoot. However, a significant amount of vibration occurred
during the maneuvering of the flexible spacecraft as demonstrated in Fig. 4(b), in which time response of the
first two vibration modes and vibration energy can be observed, and the vibration energy with the maximum
amplitude value more than 0.6Nm. Note that the energy function is given by E ¼ _qT _qþ qTKqqq, and here first
five vibration modes are considered. In addition, Here, the time response of control torque without AWC is
also shown in Fig. 4(a, dotted line) to show the effectiveness of AWC. Despite the fact that there still
exists some room for improvement with different design parameter sets, there is not much improvement in the
hub-angle and velocity responses.
Fig. 3. The PID+AWC structure.

Fig. 4. Time response for using PD+AWC case: (a) time response of angle, rate, and control torque, (b) time responses of vibration

displacements and energy.
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Fig. 6. Time response of using PID+AWC with IS case: (a) time response of angle, rate and control torque, (b) time responses of

vibration displacements and energy.

Fig. 5. The PID+AWC with input shaper structure.
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In order to actively suppress the modal vibration, a hybrid control structure for control of rigid-body
motion and vibration suppression of the flexible appendages using the saturation compensated PID control
with active vibration reduction technique based on shaping is presented here. A block diagram of the hybrid
control scheme is shown in Fig. 5. In this case, the PID controller parameters for the attitude control remain
the same for a fair comparison, and four impulses ZVDD-shaper for the first-mode and two impulses
ZV-shaper for the second-mode are implemented. Fig. 6 shows the results of employing the saturation
compensated PID controller with input shaper. It is clear from the top plot of Fig. 6(a) that the imposed
desired angular displacement is accurately achieved by employing the hybrid law. The relatively large
amplitude vibrations excited by rapid maneuvers can be actively suppressed, as shown in Fig. 6(b), and the
energy with less than 0.05Nm. This reflects the effectiveness of the input shaping for active vibrations
suppression.

4.2. VSOFC and its combination with IS

In order to improve the attitude angle response and further reduce the vibrations, the proposed ASMC is
adopted here and compared with the saturation compensated PID control case. Fig. 7 shows the results of
implementing the proposed variable structure output feedback controller acting on the rigid hub. Note that no
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Fig. 7. Time response of using VSOFC without saturation compensator case: (a) time response of angle, rate and control torque, (b) time

responses of vibration displacements and energy.
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saturation compensation is considered in this case. It is clear from the plot of the top of Fig. 7 that the imposed
desired angular displacement is accurately achieved by employing the VSOFC law. From the comparison of
Figs. 4 and 7, it is clear that the relatively large amplitude vibrations excited by rapid maneuvers can be
passively suppressed, and the inner-torque of each flywheel can approach to zero at the time of 25 s, but there
exists control saturation and little chattering.

Even though the proposed controller can passively suppress the relatively large amplitude vibrations
induced by rapid maneuvers, some residual micro-vibrations may be present. The case of the proposed
controller integrated with input shaper is also studied here. In this case, the VSOFC parameters for the
attitude control remain the same for a fair comparison, and four impulses ZVDD-shaper for the first-mode
and two impulses ZV-shaper for the second-mode are also implemented. Fig. 8 shows the results of employing
this combination. It is clear from the top plot of Fig. 8 that the imposed desired angular displacement is
accurately achieved by employing the hybrid law in the presence of the external disturbances. The relatively
large amplitude vibrations excited by rapid maneuvers can be actively suppressed, as shown in Fig. 8(b), with
less than 0.004Nm in energy. This further demonstrates the validity of active vibration reduction base on the
input shaping technique. Moreover, the chattering can also be reduced in some sense.

4.2.1. SOFC with saturation compensator and its combination with IS

For overcoming the saturation problem, the proposed control law in Eq. (41) is also studied in this
subsection. The same simulation case is repeated with the control law Eq. (41) replacing the proposed VSOFC
for a fair complexion and the results of simulation were shown in Fig. 9. For this case, the imposed desired
angular displacement can be achieved, and no saturation phenomenon can be observed in Fig. 9(a). At the
same time, in order to eliminate the vibration corresponding to the flexible appendage, the convolved first-
mode-ZVDD-shaper and second-mode-ZV-shaper is also used. The plots of this case are shown in Fig. 10. It is
clear that, from comparison of Figs. 8 and 10, even if the attitude angle response is improved less, initially a
noticeable amount of vibration was observed with the maximum amplitude of the energy being no more than
0.003Nm, and the modal vibration response was found to have almost zero vibration after 30 s. This shows
the effectives of the saturation compensated VSOFC for the attitude maneuver and the vibration reduction.
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Fig. 9. Time response of using VSOFC with saturation compensator case: (a) time response of angle, rate and control torque, (b) time

responses of vibration displacements and energy.

Fig. 8. Time response of using VSOFC without saturation compensator+IS case: (a) time response of angle, rate and control torque,

(b) time responses of vibration displacements and energy.
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Fig. 10. Time response of using VSOFC with saturation compensator+IS case: (a) time response of angle, rate and control torque,

(b) time responses of vibration displacements and energy.
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Extensive simulations were also done using different parameters uncertainty, and disturbance inputs.
These results show that in the closed-loop system attitude control and vibration stabilization are accomplished
in spite of perturbation in the system. Moreover, the flexibility in the choice of control parameters can be
utilized to obtain desirable performance while meeting the constraints on the control magnitude and elastic
deflection.

From the comparison of above cases, it is shown that the proposed approach cannot only accomplish the
attitude control during maneuvers, but also simultaneously suppress the undesired vibrations of the flexible
appendages even though the uncertainties and disturbances are explicitly considered. Furthermore, the
saturation problem can also be overcome. This control approach provides the theoretical basis for the
practical application of the advanced control theory to flexible spacecraft attitude control system.

5. Conclusion

In this paper, a new approach for simultaneous vibration reduction and precise pointing control of flexible
spacecraft is presented. This approach integrates the method of command input shaping and the theory of
VSOFC that takes into account actuator saturation, parameters uncertainties, and even external disturbances
provide that the bounded are known. The method of command input shaping is implemented outside of the
feedback loop to modify the existing command so that less vibration will be caused by the command itself. The
feedback controller based on VSOFC is designed to make the closed-loop system behave like the reference
system with input shaper and suppress the vibration of the flexible structures in the presence of parametric
uncertainty and external disturbances. For the synthesis of the attitude controller, only the pitch angel and its
derivative are used. Moreover, a saturation compensator is also designed to prevent the presence of input
saturation from destroying the system performance. To reduce chattering in an implementation, the
discontinuous term are replaced by a smoothed control forms and compared by numerical simulation.
Simulation results of slew operation of a spacecraft with flexible appendage demonstrate that with the



ARTICLE IN PRESS
Q. Hu / Journal of Sound and Vibration 318 (2008) 18–3534
command input shaper and the variable structure output feedback controller with saturation compensator, the
proposed new approach can significantly reduce the vibration of the flexible beam during slew operations.

Our future research directions include the following: (1) extensions of the proposed algorithms to the case of
tracking; (2) combination of these algorithms with some active vibration suppression techniques, such as using
piezoelectric materials for further reducing the vibration during and after the maneuver operations; and
(3) digital implementation of the control scheme on hardware platforms for attitude control experimentation.
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